Kantruktivismus und Platontologie

SCROLL FOR ENGLISH

Das Verhältnis zwischen Definition und Konstruktion eines Begriffs beschäftigt jeden braven Kantianer geschweige denn einen wie mich, der ich ja über die Konstruktion von Begriffen promoviert habe. Klassische mathematische Konstruktionen haben mit Definitionen oft nichts zu tun. Ein Kreis, der doppelt so groß ist wie ein gegebener Kreis, wird als der Kreis definiert, der zweimal den Umfang des gegebenen Kreises hat. Klassisch, euklidisch wird er als äußerer Tangentialkreis konstruiert mit einem Durchmesser, der zweimal größer als der des gegebenen Kreises ist. Zwar sind Kreise, die doppelt so groß sind wie andere Kreise, nicht immer äußere Tangentialkreise derselben, aber anders ist die Konstruktion nicht praktisch machbar.

Euklid versuchte zwar, mathematische Gegenstände nach ihrem Wesen zu definieren. Klassische Konstruktionen waren allerdings Kompromisse, die nicht aus der idealen Definition gewonnen wurden.

Kant dagegen hat verlangt, dass die Konstruktion direkt in der Definition mitgeliefert wird. Damit machte Kant die zeitliche Reihenfolge der Konstruktionsschritte zu einem Teil der Definition des Terminus für diesen Gegenstand.

Konstuktivisten haben von Kant ausgehend unser Mathematikverständnis revolutionieren wollen, indem sie die Mathematik aus dem platonischen Himmel herunterholten und den Menschen und seine Zeitanschauung in die Mathematik hineinversetzten. Dass Kant und die Erlanger Konstruktivisten ideologisch gesehen Gegner des Konservatismus waren, überrascht mich unter diesem Aspekt nicht.

Zusammenhängen zwischen Logik und Ideologie stehe ich eher skeptisch gegenüber. Und – Gott weiß – die Politikwissenschaft ist nicht mein Bier. Aber Renate Martinsens gerade erschienenes Buch, über das ich zufällig stolperte, verspricht, eine Ausnahme zu bilden, indem es die Brücke zwischen ideologischer und mathematischer Radikalität des Konstruktivismus schlägt.

Wie so oft zu Themen des Mathematikverständnisses habe ich auch hier eine Bemerkung zu machen, die sich auf meine Kinder bezieht: Kinder tendieren beim Konstruieren dazu, der euklidischen, essentialistischen Definition zu folgen. Sie verdoppeln einen Flächeninhalt oder zeichnen eine Tangente nach Augenmaß und nicht nach dem klassischen Verfahren mit Zirkel und Lineal, auch nachdem sie dieses kennengelernt haben. Keine Überraschungen hier: In ihrem Mathematik-Verständnis sind Kinder eher platonische Theologen: sie haben das Wesen der mathematischen Objekte im Visier, nicht die Tricks. Daran leiden allerdings ihre Versuche, exakte mathematische Objekte zu konstruieren.

Würde es Kindern helfen, die mathematischen Objekte stets mit Hilfe von Definitionen nach konstruktivistischer Manier kennenzulernen? Mit Hilfe von mathematischen Definitionen also, aus denen die mathematische Konstruktion direkt hervorgeht? Ich halte das für ausgeschlossen. Euklidische, essentialistische Definitionen entsprechen Grundintuitionen, dem Ausgangspunkt des Lernenden.

Radii

Good old Kantians find the relation between definitions and constructions interesting, let alone Kantians like me who spent a valuable part of their lives trying to understand Kant’s theory of the construction of concepts. Since antiquity, definitions and constructions had often no visible affinity. A classical construction of a circle with the double size of a given circle would be to draw an outer tangential circle of the given circle, one which has the double diameter of the given circle. NB, circles which are double the size of a given circle are not necessarily outer tangential circles thereof.

Euclid attempted to define mathematical objects according to their essence, but the classical constructions are the products of compromise between human capacities and Platonic essences.

Kant wanted to change this. He demanded definitions from which the instructions to construct the object which corresponds to the definiens would directly follow. By this, the temporal order with which you construct an object should belong to the definition of the concept which denotes it. This was a revolution.

Constructivists after Kant attempted to revolutionize our understanding of mathematics by adjusting it to human beings and to temporality. Ideologically, Kant and the Erlanger constructivists were liberals – which doesn’t come as a surprise.

I’m rather sceptical towards arguments which point at some correlation between logic and ideology. Renate Martinsen’s recently released book which I came across the other day, however, promises to form an exception and to bring together the ideological and the mathematical radicalism of constructivism.

Obviously, when logic and constructivism and ideology are mixed together, our understanding of mathematics is at stake. And for some years now, when I think about our understanding of mathematics, I cannot help myself thinking of my kids. They have been real teachers to me in this respect. Children tend to follow the essentialist definition of a concept when they try to construct the corresponding object. They would double an area or draw a tangent by eye – and against your instructions – and ignore at first the classical construction by means of a rule and a compass. No surprise here too: kids are Platonic theologians; they keep an eye on the mathematical essences and ignore the manipulations which our own restrictions dictate.

Would it be helpful if kids were made to learn mathematics using definitions formulated in the constructivist manner? Definitions, that is, which entail instructions to construct the mathematical objects in question? Rather not, I think. Essentialist, Platonic definitions correspond to intuitions, their starting point for learning.

Schreibe einen Kommentar

Trage deine Daten unten ein oder klicke ein Icon um dich einzuloggen:

WordPress.com-Logo

Du kommentierst mit Deinem WordPress.com-Konto. Abmelden / Ändern )

Twitter-Bild

Du kommentierst mit Deinem Twitter-Konto. Abmelden / Ändern )

Facebook-Foto

Du kommentierst mit Deinem Facebook-Konto. Abmelden / Ändern )

Google+ Foto

Du kommentierst mit Deinem Google+-Konto. Abmelden / Ändern )

Verbinde mit %s