Free variables for free teens

Scroll for English

Die Einführung in die Algebra geschieht in der Regel in der 7. Klasse. Der Lehrer sagt das unvermeidliche „Jetzt lernen wir, mit Buchstaben zu rechnen“ und die Dreizehnjährigen sollen auf einmal „tschecken“, dass die Ixen und die Ypsilons nicht für einen Laut stehen, wie sie bisher lernten, sondern Platzhalter für mathematische Werte sind. Zwar spricht der Lehrer nicht die Wörter „ungebundene Variable“ aus – die wenigsten Lehrpersonen würden den Logiker-Jargon beherrschen – aber, dass es so etwas gibt, sollen die Teens auf einmal begreifen.

Dass das nicht auf Anhieb funktioniert, verwundert oft. Auf die Gründe, aus denen es so oft vorkommt, dass Xen und Ypsilons fatalerweise miteinander addiert werden, anstatt dass sie von hier nach da geschoben und manipuliert werden, wie es der Lehrer sagt und erwartet, kommt es vielleicht nicht so sehr an. Meine Vermutung ist jedenfalls, dass die jungen Leute im Hinterkopf haben, dass „x“ und „y“ Konstante sind. Sie haben diese Zeichen ja als Konstante für phonetische Werte kennengelernt, eben Laute, und es fällt ihnen wohl nicht leicht, sie als stellvertretend für alle numerischen Werte zu betrachten.

Es gibt vielleicht die Schüler, die nach der Neudefinition von „x“ und „y“ damit beginnen, sie anders zu verwenden als im Deutschunterricht. Definitionen sind didaktische Hilfsmittel und bereits Aristoteles sowie die griechischen Mathematiker betrachteten es bereits in der Antike als nützlich fürs Lernen, wenn Buchstaben die Variablen bezeichnen. Allerdings sind die didaktischen Hilfsmittel für Erwachsene nicht immer geeignet für Kinder und mir jedenfalls ist nie bisher ein dreizehnjähriger Bourbakist untergekommen. Da wird man didaktisch zum Konstruktivisten. Meiner großen Tochter habe ich mit Jolly Roger und Pink Panther an Stelle von „x“ und „y“ den Umgang mit freien Variablen beigebracht. Die freien Variablen definiert habe ich niemals bei ihr. Höchstens habe ich das in dieser Lehrveranstaltung in Erfurt vor Jahren gemacht, die Prädikatenlogik zweiter Stufe voraussetzte, was ich im Schnelldurchgang machte. Aber selbst da glaube ich nicht, dass die Studenten wegen meiner Definition die Zeichen korrekt manipulierten.

Jedenfalls macht es den Kids Spaß, alberne Bilder als semantisch ungesättigte – und deshalb unkalkulierbare – Symbole loszuwerden, wenn sie sie im Zähler und im Nenner desselben Bruchs vorfinden. Herzchen und Fische sind so ungewöhnlich in diesem Kontext, dass sie niemals versuchen werden, mit ihnen zu rechnen. Schnell werden sie erkennen, dass das Verhältnis 4💰/2💰 zwei zu eins beträgt. Sie sind dagegen oft nicht so sicher, wenn sie 4x/2x sehen, ob der Bruch um die Xen zu kürzen ist. Keine Ahnung warum! Vielleicht, weil man „tableaux“ nie um das „x“ kürzt, auch wenn das stumm ist.

Selbst wenn der Groschen nicht fällt, dass sie auch in der Algebra Faktoren zu eliminieren versuchen sollen, den klassischen Fehler des Addierens von 2x und 2y zum Ergebnis 4xy werden die Schüler, wenn sie komische Icons statt „x“ und „y“ haben, nicht mehr machen. 2☠️ und 2❤️ ist für sie nicht 4☠️❤️.

Ein offensichtlicher Nachteil des Ganzen ist, dass alberne Bilder unschön sind. Wer also glaubt, dass es in der Mathematik um Eleganz geht – ich z.B. – sollte schöne erfinden.

Sie sollen nur abstrakt genug sein, um den Eindruck zu erwecken, hier gehe es um Platzhalter, die viele mögliche Werte suggerieren.

Enough with scrolling

Traditionally, algebra begins in the 7th grade. Teachers talk the obligatory „now-we’ll-calculate-with-letters“-talk and the teens are supposed to see that these letters are unbounded variables. I mean, the teacher doesn’t tell them they’re unbounded variables and she’ll rather ignore the logician’s jargon, but she understands letters to be unbounded variables and expects students to understand them this way too.

However, teens have often huge problems with this. They’ll rather want to calculate with these „x“s and „y“s – fatal mistake! – instead of trying to drag them from here to there and to manipulate them like they’re supposed to do. One reason for this highly defeasible tendency could be the fact that for six or seven years schoolchildren have been treating „x“ and „y“ and „a“ and „b“ as having one value – a phonetic, of course, but, still, one-and-only value. And now the teacher wants them to start treating them as gaps for any value? That doesn’t work. I mean, it works for mathematics and logic but here I’m talking didactics. Constructivist didactics maybe; however the more I’ve worked with teenagers – but also with university students – the less sympathetic I’ve become towards Bourbakism.

Already Aristotle and the Greek mathematicians have used letters as variables. I am fond of this huge heritage but my daughter grasped the thought behind the „x“ and the „y“ after I started to use them interchangeably with hearts, the Jolly Roger and the Pink Panther. Kids will rather try to rid these symbols off if they see them in the numerator and the denominator of the same fraction instead of calculating with them. But they’ll not try to rid off letters in analogous cases. But, I mean, you don’t get rid of „x“ in the word „tableaux“ either, do you? At any rate there is something in letters that blocks them when they’re about to amplify an algebraic fraction.

And even if they don’t get the clue behind eliminating variables as factors, by using funny icons instead of letters as symbols for variables at least you can forget the classical mistake of taking 4xy to equal the sum of 2x and 2y. No way they would sum up 2☠️ and 2❤️ to be 4☠️❤️. And, as I said, they’ll quickly recognise that the ratio of 4💰/2💰 is two to one, which is not always the case when you give them 4x/2x.

These didactical tools have at least one disadvantage: they are not beautiful. This is why, for those who believe that maths is about beauty – and I do believe so – they are suboptimal. But this is only a technical problem to be solved with the creation of beautiful icons.

One has only to take care that they’re abstract enough to suggest variables.

Advertisements

From an epistemic ethos to an epidemic pathos

Scroll for English

Die Zeit, da Rudolf Steiner in puncto Mathematikdidaktik auf Aufsätze seiner Leute in Ostwalds Annalen der Naturphilosophie hinweisen konnte, einer Zeitschrift, in der auch Positivisten wie Ernst Mach und – na ja – sui generis Positivisten wie Ludwig Wittgenstein publizierten, liegt 99 Jahre zurück.

Die heutige Spezialisierung der Fachzeitschriften sowie die Ideologisierung von paradigmatischer Lehre und Forschung lassen folgende, aus: Steiner, R., Erziehungskunst: Seminarbesprechungen und Lehrplanvorträge (GA 295), Dornach 1984, S. 119, entnommene, September 1919 in Stuttgart entstandene Notiz über eine Publikation eines frühen Waldorfpädagogen unglaublich erscheinen.

Enough with scrolling

99 years ago, Rudolf Steiner, a dualist and Goethe expert, had the opportunity to see scholarly work of his followers comprising didactical tools for maths for the first Waldorf-Steiner School in Stuttgart, in journals like Ostwald’s Annalen der Naturphilosophie, where positivists like Ernst Mach and – well – idiosyncratic positivists like Ludwig Wittgenstein also published their work.

Today’s specialisation of journals, and also the epidemic of ideological bias inside paradigms make the note from the year 1919 (from: Steiner, R., Discussions with Teachers, Barrington MA, discussion 10) appear unreal.

Um Gott’s Wui’n

 

🇩🇪🇦🇹🇨🇭 Es ist so diskriminierend. Es ist so deprimierend. Um Gottes Willen…
🇬🇧🇺🇸🇨🇦🇮🇪🇳🇿🇦🇺 It’s so discriminating. It’s so degrading and sad. For God’s sake…

On Oxford. And on Frankfurt. Harry Frankfurt

SCROLL FOR ENGLISH

Jede Person muss eine Zahl zwischen 0 und 100 wählen. Den Preis bekommt die Person, deren Zahl am nächsten zu den zwei Dritteln der Zahl liegt, die den Mittelwert aller gewählten Zahlen bildet. Welche Zahl wählst du und warum?

So zitiert der Guardian eine der Fragen in einem Aufnahmeinterview für angehende Studenten des Fachbereichs Experimentalpsychologie an der Universität Oxford. Bei aller Bescheidenheit habe ich Jahre meines Lebens damit verbracht, über das Wesen der Rationalität nachzudenken und muss sagen, dass die Frage bestenfalls Schikane und schlimmstenfalls die Frucht von Inkompetenz ist – oder umgekehrt.

Angenommen, dass die Streuung der Werte homogenen ist oder der Gaußschen Normalverteilung entspricht, wird der Mittelwert 50 sein. Da man mit einer Zahl, die ungefähr 2/3 des Mittelwertes beträgt, den Preis gewinnt, ist man dann gut beraten, die Zahl 33 zu wählen, die fast zwei Drittel von Fünfzig beträgt. Immerhin werden die anderen auch rationale Personen sein, die mit diesem Gedankengang die Zahl 33 als eine gute Wahl errechnen. In diesem Fall wird die Zahl 33 und nicht die Zahl 50 der Mittelwert sein. Infolge dessen muss ein rationales Individuum die Zahl 2/3 x 33 = 22 wählen. Aber die anderen werden wahrscheinlich ebenfalls in der Lage sein, solche Gedankengänge zu machen und die Zahl 22 zu wählen. Das würde die Zahl 22 zum neu prognostizierten Mittelwert machen, weshalb ein rationales Individuum die Zahl 15 wählen würde. Gibt es aber etwas, was die anderen davon abhalten könnte, ebenfalls die Zahl 15 zu prognostizieren? Und so weiter und so fort, bis eine Zahl erreicht ist, die fast 0 beträgt..

Ist 0 die richtige Antwort? Ich meine ja – aus der Sicht eines Mathematikers oder Logikers.

Ein angehender Psychologe sollte allerdings eher annehmen, dass die Iterationen vor der Null aufhören.

Wie hätte nun bloß Harry Frankfurt diese Interview-Frage bezeichnet?

Oxford exper psych

ENOUGH WITH SCROLLING

Each person has to choose a number between 0 and 100 and the prize goes to the person whose number is closest to two thirds of the average of all of the numbers chosen. What number will you choose, and why?

The Guardian says that this is one of the questions of an admission interview for the Experimental Psychology Department at Oxford University. As someone who has spent years on thinking about rationality, I have to say that it’s harassment in the best case or a fruit of incompetence in the worst – or vice versa.

If you assume that there is a homogeneous or a Gaussian distribution of the values, the average number will be 50. But then, since you win if you choose a number which is (about) 2/3 of the average number, as a rational individual you have to choose the number 33. However, if you assume that the others are also rational persons, they’ll also choose the number 33. But then, 33 will be the average rather than 50, to make you choose, of course, the number 22 = 33 x 2/3. Nevertheless, the others will be plausible to make themselves the thoughts you make and to chose 22 as well. 22, being your new predicted average, will make you choose the number 15. But – wait! – what could prevent the others choose 15 by the same considerations? And so on until you reach a number close to 0.

Is zero the correct answer? I would say yes – for a mathematician or a logician.

A good psychologist, however, should rather suppose that at some point before the number zero every rational individual who’s not a mathematician or a logician would put an end to the iterations.

This interview question reminds me, of course, of Harry Frankfurt.

Of zeros and nows

SCROLL FOR ENGLISH

Marta, meine Ältere, fragte mich heute, ob Jesus im Jahr 0 zur Welt kam. Kommt es nun darauf an, zwischen wahr und falsch zu unterscheiden, dann ist „nein“ wohl eine angemessene Antwort. Allerdings sind Fragesteller, Kinder oder Erwachsene, in der Regel nicht daran interessiert, irgendwas Wahres von irgendwas Falschem zu unterscheiden, sondern sie wollen bestimmte Zwecke erfüllen. Antworten, die über diese pragmatische Komponente des Fragestellens hinwegsehen, laufen Gefahr, nutzlos oder zu detailliert zu sein.

„Jesus wurde im Jahr 6 vor unserer Zeitrechnung geboren und es gibt kein Jahr 0“ klingt wiederum angemessen, zieht allerdings eine Vielzahl an weiteren Fragen nach sich. Gut, Kinder können verstehen, dass ein Geschichtsschreiber des Mittelalters sich um 6 Jahre irrte, als er die Geburt Christi datieren wollte.

Aber warum gibt es kein Jahr 0? Nun, eine Antwort könnte sein, dass es zweckmäßig ist, die Weihnachten des Jahres 1 nach Christus genau ein Jahr und nicht zwei Jahre nach Christi Geburt festzulegen. Ebenfalls zweckmäßig erscheint es, wenn der 1. Januar des Jahres 1 vor Christus ein Datum ungefähr ein Jahr und nicht ungefähr zwei Jahre vor Christi Geburt ist. Beides kann nur erzielt werden, wenn es kein Jahr 0 gibt.

Aber wie kann man den Umstand erklären, dass es keinen Tag oder keine Stunde 0 gibt? Nun, einerseits ist so etwas vor dem Hintergrund der Lehre des Aristoteles in der Physik 218 a gut nachvollziehbar: Dort sagt der Philosoph, es gebe eine lange Vergangenheit, ebenfalls eine lange Zukunft, aber die Grenze zwischen Vergangenheit und Zukunft sei ein Jetzt ohne Umfang, ohne Dauer. Wollte das Mittelalter den Anfang unserer Zeitrechnung als ein besonders herausragendes Jetzt auszeichnen, dann sollte dieses Jetzt ohne Umfang sein.

Allerdings hätte jeder Aristoteliker gleichzeitig gewusst, dass Aristoteles oft keine ultimative Doktrin mit absoluter Gültigkeit verkündet. Im Gegenteil machte Aristoteles des Öfteren seine Theoriebildung davon abhängig, welche Zwecke durch die Erkenntnis erfüllt werden. Während die Topik zum Teil für Leser bestimmt ist, die vor einem politischen Gremium argumentieren wollen, stellt sich die Analytik dagegen die Aufgabe, den Leser zur Verteidigung einer Gelehrtenmeinung gegenüber Gelehrten zu befähigen.

Aristoteles‘ Lehre von der Zeit verstehe ich als eine enzyklopädische Präsentation mit folgenden Schwerpunkten: Ein Mathematiker sollte die Zeit als bestehend aus einer sich nach hinten ins Unendliche erstreckenden Vergangenheit und aus einer sich nach vorne ins Unendliche erstreckenden Zukunft verstehen. Aber die Gegenwart sollte er als eine umfanglose Grenze zwischen Vergangenheit und Zukunft verstehen. Nun beschäftigt sich der Mathematiker mit dem potenziell Unendlichen und dem potenziell Infinitesimalen als einem Reich, in dem das Phänomen der Bewegung unbekannt ist – man denke hierbei an Zenons Paradoxien. Anders als der Mathematiker beschäftigt sich der Physiker ausschließlich mit der Bewegung: mit einer endlichen Vergangenheit, einer endlichen Zukunft und einem Bereich, eher einer Pufferzone als einer Grenze zwischen ihnen ähnlich, der konventionell „jetzt“ genannt wird.

Gerade diese allerletzte Vorstellung war sehr beliebt im Mittelalter – erwartungsgemäß, wenn man an den Glauben an Schöpfung und Jüngsten Tag denkt. Vor dem Hintergrund dieser Vorstellung hätten die mittelalterlichen Historiker durchaus eine Zeit null postulieren können. Ich kann mir aber auch vorstellen, dass es verwirrend für sie war, Aristoteles einerseits als die größte Autorität anzuerkennen, ihn andererseits als jemanden kennenzulernen, der die Fragen „Was weiß ich?“ und „Welchen Zweck will ich damit erfüllen?“ als zusammenhängend betrachtete.

Es bleibt bis dato irreführend! Stewart Shapiro, Geoffrey Hellman und Øystein Linnebo arbeiten über eine Geometrie im Geiste des Stagiriten. Die besagte Geometrie verzichtet auf aktuelle Unendlichkeit und Punkte, aber die Grenzen zwischen angrenzenden Strecken haben keinen Umfang. Das ist – Entschuldigung! – ein Durcheinander. Ein Aristoteliker muss zweierlei raten: Mathematikern muss er nahelegen, Pythagoreer und Platon zu lesen, Physiker muss er dagegen mahnen, alles, was sie in Geometrie über den Begriff Grenze lernten, zu vergessen. Aristotelische Mathematiker sind Platoniker; aristotelische Physiker sind Finitisten.

Während seines Vortrags am 18. Dezember 2014 in München betrachtete Shapiro sein Publikum kritisch und behauptete: „Ich meine, dass unsere Theorie aristotelisch ist, aber es gibt im Publikum keine Aristoteliker!“

Ganz und gar nicht! Aristoteles misfielen ultimative Ergebnisse, die an den Zwecken vorbei formuliert wurden, die diese Ergebnisse erfüllen sollen. Ein Formalist sieht das als Verrat an der Mathematik an. Ich glaube allerdings, dass die Mathematik wie die Pädagogik, die Politik  etc. die mit der Theorie zu erfüllenden Zwecke mit einbeziehen sollte.

Mit dieser Meinung bin ich in der ausgesprochen guten Gesellschaft von Aristoteles und meiner Tochter Marta.

nows

My daughter Marta asked me today if Jesus was born in the year zero. If you’re interested in giving the correct information you just answer „no“. However, children – and people in general – don’t raise questions just in order to get a correct information. They raise questions in order to serve their purposes. If you answer regardless of this pragmatic constraint then the danger is that the answer is either inadequate or too detailed.

„Jesus was born in the year 6 BC and there is no year 0“ sounds adequate – but it invites innumerable questions. Of course, children can understand that some medieval historian made a mistake when he determined Jesus Christ’s birth 6 years later.

But why isn’t there a year 0? Well, an answer could be that we want the Christmas of the year 1 AD to be one year after Christ’s birth instead of two and we want the 1st of January of the year 1 BC to be roughly one year before Christ’s birth instead of – again – two. This can be achieved only if we don’t have a year zero.

In fact, there is no day zero or hour zero. This doesn’t come as a surprise if you have read Aristotle’s Physics 218a where the philosopher appears to argue that there is an extended past and an extended future, but the present, which he thought to be the limit between the past and the future, has no extension. If the medievals wanted the beginning of our chronology to be a very special „now“, then this „now“ should be without extension.

However, a good Aristotelian knows that Aristotle often gave no ultimate answer as to what we would call today a-state-of-the-art knowledge on a topic. Instead, he often made his answers dependent on the purposes which knowledge serves. Parts of the Topics are written for people who formulate arguments to be presented in political assemblies, but the Analytics are written for people who want to persuade scholars.

I understand Aristotle’s views on time as an encyclopaedic framework stating the following: for a mathematician, time consists of a past which is backward infinite, and of a future which is forward infinite, the limit between past and future being an extensionless now. But mathematics is the realm of the potentially infinite and the potentially infinitesimal. Mathematics does not describe movement – Zeno’s paradoxes being the best witness to this. By contrast, physics describe nothing but movement: a finite past and a finite future and a vague time segment between them – a buffer zone rather than a limit – misleadingly also called „now“.

The medievals were fond of the latter view for reasons which had to do with their bias in favour of creation. In this sense, it’s rather strange that they didn’t postulate a time zero – and an extensive one. I suppose that it was irritating for them to realize that their greatest authority was a liberal who encouraged them to see knowledge as depending on the purposes which one serves with it.

And it’s still irritating! Stewart Shapiro, Geoffrey Hellman and Øystein Linnebo work on a geometry which is supposed to be Aristotelian in spirit. It has no actual infinity, no points, but it has limits between adjacent line segments. To my understanding of Aristotle, this is a hodgepodge. Aristotle would advice two different things: he would advice mathematicians to read the Pythagoreans and Plato, but he would advice physicists to forget about limits. The Aristotelian mathematician is a Platonic; the Aristotelian physicist is a finitist.

Shapiro, in his lecture on December 18, 2014 in Munich looked at the audience and assumed: „I say that my account is Aristotelian but there are no Aristotle people here!“

No, it’s not Aristotelian. Aristotle didn’t launch an ultimate doctrine regardless of the purposes which the doctrine serves. But to state this, is for formalists to stop talking mathematics. For me, however, in mathematics, like in pedagogics, in politics etc. the purposes which the person who raises a question wants to serve must be taken into account.

And for Aristotle too. And for my daughter Marta.

Mapping, classes, functions, icons 78 years after

SCROLL FOR ENGLISH

Gestern vor 78 Jahren wurde der Mathematiker und Theologe Pawel Florenskij nach einem Schauprozess bei Sankt Petersburg hingerichtet. In diesem Semester leite ich ein Seminar zu seinem Werk und in der gestrigen Sitzung ging es um seine Ansichten zur Malerei, insbesondere zu den byzantinischen und altrussischen Ikonen.

Eine Ikone ist für Florenskij eine Abbildung einer erlebten Realität. Bei der Abbildung kommt es nicht auf Realitätstreue an, sondern es kommt einzig und allein darauf an, welche Funktion mit der Abbildung Ausdruck findet. Der Naturalismus ist dabei nur eine von vielen Möglichkeiten.

Das Thema passte zum Gedenktag. Florenskij ist mittlerweile selber eine Ikone geworden.

In der Quellsprache, dem Griechischen, benutzt man allerdings das Wort „Ikone“ niemals metaphorisch, bezogen auf eine Person. Ikonen sind im griechischen (und im altrussischen) Sinn Darstellungen, die niemals mit dem Abgebildeten zusammenfallen.

Schon wieder ist es spät geworden und ich muss die morgige Vorlesung zu Theodor von Studion und seinen sic-et-non Argumenten gegen die Ikonoklasten vorbereiten – so ein Zufall aber…

Deshalb höre ich jetzt mit diesem Beitrag auf und klicke ein anderes Icon an.

orththeol

78 years before yesterday, Pavel Florensky, the Russian mathematician and theologian was executed near Saint Petersburg after a show trial. Yesterday, my Florensky class was dedicated to Florensky’s views on painting, particularly to Byzantine and Old Russian  icons. For Florensky, an icon is a map of a perceived reality. A map is not supposed to be faithful to the original. The mapping is only supposed to represent a certain function. Naturalism is only one of many options.

The topic was very suitable for the anniversary. Florensky himself has become an iconic figure.

In the language, however, from which the word „icon“ originates, i.e. in Greek, „icon“ never refers metaphorically to a person. An icon in the Greek (and the Old Russian) sense of the word is a map which never coincides with the mapped thing.

But now it’s late and I have to prepare tomorrow’s lecture on Theodore Studite’s sic-and-non arguments against the iconoclasts – an unbelievable coincidence. I’m hurrying up to post this and to click on another icon.

If Meno’s slave had been a girl

SCROLL FOR ENGLISH

Als Einziges setzt Sokrates in Platons Menon 82b4 voraus, der pais, den ihm sein Gastgeber präsentieren soll, solle Griechisch können. Pais ist Griechisch für „Junge“ und „Mädchen“. Erst ein Artikel oder der Kontext machen die Bezeichnung geschlechtsspezifisch. Mit einer kleinen Änderung hätten wir also im Originaltext statt eines Jungen ein Mädchen. Statt eines jungen Sklaven wäre es eine junge Sklavin, mit deren Hilfe Sokrates demonstriert hätte, dass das Verständnis der Mathematik kein Lernen voraussetzt, sondern lediglich einfällt.

Sokrates‘ Argument wäre durch diese Änderung nicht beeinträchtigt.

Das waren meine Gedanken gestern, nachdem ich in einer Buchhandlung zwei Übungsbücher für Mathematik gesehen hatte: Textaufgaben für Jungs und Textaufgaben für Mädchen.

Beim Durchblättern der Bücher ist mir aufgefallen, dass das Buch für die Jungs mehr Textaufgaben mit Geld und Autos enthielt, das Buch für die Mädchen mehr Textaufgaben mit Ponys. Hier handelt es sich um naive Alltagspsychologie, die vom Verlag gekonnt für die Produktdiversifikation angewandt wird.

Aber welcher Verlust auf einer epistemologischen Metaebene bei den Eltern, die auf den Gedanken kommen könnten, die Mathematik, eine Grundkapazität also, zu der alle Menschen ungeteilt Zugang haben, wäre so beschaffen, dass sie Mädchen anders mitgeteilt werden sollte als Jungen.

Und welcher Horror für das Geschlechterverständnis dieser Menschen…

g_slave_girl_dancing

Socrates‘ only demand towards Menon in Plato’s homonymous dialogue 82b4 is that the pais should speak Greek. Pais was the Greek word for „boy“ and „girl“, the disambiguation being given in the article or in the context. With a minimal alteration of the original text, Socrates would have shown with the help of a girl slave instead of a boy slave that mathematics requires reminiscence rather than learning.

The argument would be essentially the same.

These were my thoughts yesterday after I stumbled across these two books with mathematical problems in text form: Problems for Boys and Problems for Girls.

Browsing through them I noticed that the book for boys contained mostly problems with cars and money, the book for girls contained problems with ponies. What we have here is folk psychology which the publisher uses in order to diversify the product line.

But what a loss on an epistemological metalevel for those parents who come to think that mathematics, a basic capacity to which all rational beings have the same access, would require a different didactic approach depending on whether boys or girls are the audience.

And what a horror if you think of the views of such people on gender…